REMOTE SENSING IMAGE CLASSIFICATION WITH GIS DATA BASED ON SPATIAL DATA MINING TECHNIQUES

在线阅读 下载PDF 导出详情
摘要 IthaslongbeenacknowledgedthatGISdatacanbeusedasauxiliaryinformationtoimproveremotesensingimageclassification.Inpreviousstudies,GISdatawereoftenusedintrainingareaselectionandpostprocessingofclassificationresultoractedasadditionalbands.Generally,itisfulfilledinastatisticalorinteractivemanner,soitisdifficulttousetheauxiliarydataautomaticallyandintelligently.  Furthermore,iftheclassifierrequestscertainstatisticalcharacteristics,theadditionalbandmethodcannotbeusedbecausemostauxiliarydatadonotmeettherequirementsofstatisticalcharacteristics.Ontheotherhand,expertsystemtechniqueswereincorporatedinremotesensingimageclassificationtomakeuseofdomainknowledgeandlogicalreasoning.Butbuildinganimageclassificationexpertsystemwasverydifficultbecauseofthe“knowledgeacquisitionbottleneck”.  Spatialdataminingandknowledgediscovery(SDMKD),istheextractionofimplicit,interestingspatialornon_spatialpatternsandgeneralcharacteristics.Weproposedatheoreticalandtechnicalframeworkofspatialdataminingandknowledgediscovery(Lietal.,1997).Andspatialdataminingissupposedtobeusedintwoaspects,oneisintelligentanalysisofGISdata,theotheristosupportknowledgedriveninterpretationandanalysisofremotesensingimages.SDMKDprovidesanewwayofknowledgeacquisitionforremotesensingimageclassification.Severalresearchershavedonesomeworkinthisfield.Eklundetal.(1998)extractedknowledgefromTMimagesandgeographicdatainsoilsalinityanalysisusinginductivelearningalgorithmC4.5.Huangetal.(1997)extractedknowledgefromGISdataandSPOTmultispectralimageinwetlandclassificationusingC4.5too.Inthesetwostudies,geographicdatawereconvertedfromvectortorasterformatinwhichthesamplingsizeisequaltoimagepixelsize.Theimplementationofdataminingtechniquesinspatialdatabase,especiallyinductivelearningmethod,andthecombinationo
机构地区 不详
出版日期 2000年04月14日(中国期刊网平台首次上网日期,不代表论文的发表时间)
  • 相关文献