学科分类
/ 4
76 个结果
  • 简介:采用电化学两步反应在纯钛基体表面制备K2Ti6O13/TiO2复合涂层,对其形貌、相组成和电化学耐腐蚀性能进行研究,并与传统化学方法制备的涂层进行比较。结果表明,电化学法制备的涂层为多孔网状结构,由内层阻碍层和外层多孔层的双层膜组成,可抑制Ti基体过钝化时的O2析出;KOH电解液作用时,随电流密度增加,涂层阻抗值减小,多孔层厚度逐渐增加;电流密度大于20mA/cm^2时,涂层发生脱落,但其耐腐蚀性能仍高于化学方法制备的涂层。因此通过电化学方法制备的涂层可改善Ti基体的腐蚀行为,使其具有更优异的耐腐蚀性能。

  • 标签: Ti基体 网状涂层 极化曲线 电化学阻抗谱 耐腐蚀性
  • 简介:采用溶胶-凝胶工艺首先制备La0.85Ag0.15MnO3和(Ba0.7Sr0.3)3Ni2Fe24O41的前驱体,经煅烧制得由钙钛矿结构的La0.85Ag0.15MnO3稀土锰氧化物和Z型六角铁氧体(Ba0.7Sr0.3)3Ni2Fe24O41组成的复合材料,利用X射线衍射仪和扫描电镜分别分析其微结构和形貌;使用矢量网络分析仪系统测量该复合材料的微波电磁参数和吸波性能,并对影响其微波吸收性能的主要因素及作用机理进行研究与分析。结果表明:1250℃的煅烧温度下,La0.85Ag0.15MnO3含量(质量分数)为40%的复合材料的微波吸收峰值达-30dB,在2~18GHz频段小于-10dB的吸收频宽为3.9GHz,微波吸收性能明显优于La0.85Ag0.15MnO3单相材料和Z型六角铁氧体(Ba0.7Sr0.3)3Ni2Fe24O41单相材料;复合材料中存在介电损耗和磁损耗共存与协同作用,以及界面效应和磁电耦合作用,有利于介电常数调控和阻抗匹配优化,从而提高微波吸收性能。

  • 标签: LaMnO3掺杂 Z型六角铁氧体 双相复合 微波吸收
  • 简介:采用水热法制备平均粒度约300nin的六方相Bi2Te3纳米粉末。再以Bi2Te3粉末为原料,采用封管熔炼法制备N型(Bi2Te3)0.9(AgxBi2-xSe3)0.1(x为Ag的摩尔分数。x=0.1,0.2,0.3,0.4)合金粉体材料,通过快速热压制备N型(Bi2Te3)0.9(AgxBi2-xSe3)0.1块状热电材料。在300~550K温度范围内研究该材料的热电性能与Ag掺杂量之间的关系,以及热压工艺对材料热电性能的影响。结果表明在775K,40MPa条件下烧结20min后材料的相对密度达到97%以上,晶粒大小在3gm左右。当Ag掺杂量x=0.2时,在300K温度下热导率达到最小值0.71W/mK,同时获得最高的热电优值(ZT值)1.07。

  • 标签: 封管熔炼 快速热压法 (Bi2Te3)0.9(AgxBi2-xSe3)0.1 热电优值
  • 简介:在316L不锈钢粉末中添加Cr2N粉末,采用粉末注射成形工艺制备Cr2N增强奥氏体不锈钢,利用扫描电镜观察与能谱分析以及洛氏硬度测定,研究Cr2N对MIM316L不锈钢组织、成分与硬度的影响,并通过中性盐雾试验研究Cr2N对MIM316L不锈钢抗腐蚀性能的影响。结果表明,316L不锈钢中添加Cr2N后,显微组织仍为典型的奥氏体组织,材料的密度与硬度都有所提高。Cr2N添加量为3%时,不锈钢硬度由64.5HRB提升至78HRB,并且不会导致抗腐蚀性能下降。

  • 标签: 金属注射成形 奥氏体不锈钢 硬化 氮化铬
  • 简介:用溶胶-凝胶法制备镍锌共掺杂Z型锶钴铁氧体Sr3(NiZn)xCo2(1-x)Fe24O41(x=0~0.5)粉末。用X射线衍射(XRD)和扫描电镜(SEM)表征该铁氧体粉末的晶体结构和表面形貌,并测试其室温磁滞回线和室温电阻率。用微波矢量网络分析仪测定该粉末在2~18GHz微波频率范围的复介电常数和复磁导率,根据测量数据计算电磁损耗角正切及微波反射率,分析该材料的微波吸收性能与电磁损耗机理。结果表明:Sr3(NiZn)xCo2(1-x)Fe24O41粉末呈六角片状形貌,晶体结构为Z型,具有良好的软磁特性;x=0.3时该材料的电阻率最低,微波吸收效果最好,在13.5GHz频率的吸收峰为25.1dB,10dB频带宽度为7.7GHz,兼具强的磁损耗和弱的介电损耗。

  • 标签: 溶胶-凝胶法 Z型锶铁氧体 镍锌掺杂 微波吸收 电磁损耗
  • 简介:通过电化学分析与测试,研究B4C体积分数分别为20%、30%、40%的B4C/Al基复合材料及其基体合金(6061铝合金)在不同浓度及不同温度的硫酸溶液中的腐蚀行为。由动态极化曲线和阻抗谱得到相应的电化学参数,并利用阻抗分析软件对该复合材料和基体合金腐蚀过程的等效电路进行模拟,分析腐蚀机理,通过Arrhenius方程计算腐蚀过程中B4C/Al基复合材料与6061铝合金的反应活化能,并分析两者的焓变与熵变,对腐蚀前后2种材料界面的微观结构进行观察。结果表明:B4C/Al基复合材料在硫酸溶液中的腐蚀速率随B4C颗粒含量增加而增大,基体铝合金在硫酸中的耐腐蚀性能高于B4C/Al基复合材料。B4C/Al基复合材料和基体铝合金在硫酸中的腐蚀速率都随硫酸溶液浓度增加而增大;当溶液温度升高时,二者的腐蚀速率都快速增加。B4C/Al基复合材料和Al基体合金在硫酸溶液中的腐蚀都表现为明显的点蚀。铝基体材料在硫酸溶液中的反应活化能大于B4C/Al基复合材料,计算所得活化焓与活化熵的值均表明复合材料的腐蚀反应比基体合金更容易进行,因而遭受腐蚀更严重。

  • 标签: B4C/Al复合材料 H2SO4溶液 电化学方法 显微组织
  • 简介:与TiO2光催化剂相比,以SiO2为载体或内核制备的TiO2/SiO2复合催化剂,其表面活性、光催化活性和热稳定性都更高。以粉煤灰为原料制备的沉淀SiO2为硅源,钛酸四丁酯为钛源,采用化学包覆法制备TiO2/SiO2复合物,采用扫描电镜(XRD)、红外光谱(FT-IR)和差热分析(TG-DTA)等测试手段对该复合物进行表征。FT-IR和TG-DTA分析证实,SiO2被TiO2有效包覆。复合物热稳定性较高,经700℃焙烧4h后,SiO2仍为无定形,TiO2以锐钛矿相为主;在900℃焙烧后,TiO2大部分由锐钛矿相转变为金红石相。

  • 标签: 二氧化钛 沉淀二氧化硅 化学包覆 粉煤灰
  • 简介:利用CVI法,在两种不同类型的国产SiC纤维束中引入(PyC/SiC)4或(PyC/SiC)8多层界面,并进一步致密化,制备含不同纤维种类和界面类型的SiCf/SiCMini复合材料。研究纤维种类和界面类型对SiCf/SiCMini复合材料力学性能和断裂机制的影响。结果表明:致密化的SiCf/SiCMini复合材料已形成一个整体,在纤维和基体连接处可观察到明显的界面层,且界面厚度均匀;A/(PyC/SiC)4/SiC、B/(PyC/SiC)4/SiC、A/(PyC/SiC)8/SiC三种SiCf/SiCMini复合材料的最大拉伸强度分别达到466,350和330MPa,最终拉伸应变分别达到0.519%,0.219%和0.330%;拉伸断口均有纤维拔出,且随纤维种类或界面类型不同,纤维拔出长度和断口形貌有所差异。其中A/(PyC/SiC)4/SiC以ModelⅡ断裂机制发生断裂,B/(PyC/SiC)4/SiC和A/(PyC/SiC)8/SiC以ModelⅠ断裂机制发生断裂。

  • 标签: (PyC/SiC)n多层界面 SiCf/SiCMini复合材料 拉伸强度 伸长率 断裂机制
  • 简介:采用无压烧结法制备含CeO2的Mo/Al2O3材料,用MM-200型环-块式摩擦磨损试验机测试该材料在滑动干摩擦条件下的磨损行为,通过X射线衍射(XRD)和电子探针对其微观结构和磨损后的形貌进行研究和分析。结果表明,添加CeO2的烧结样品中出现CeAl11O18相,且随CeO2含量(体积分数)增加,CeAl11O18逐渐增多,Al2O3相应减少。当CeO2的体积分数为6%时Al2O3全部由CeAl11O18取代;CeO2的添加使Al2O3和CeAl11O18相边界处均呈现圆钝形貌,并且存在Mo、Al、O的相互扩散区域。磨损形貌表明,1730℃烧结的样品中出现摩擦转移层,当CeO2含量达到4%时,该摩擦转移层大量出现,从而改善材料的耐磨性。

  • 标签: 氧化铝 氧化铈 微观结构 磨损
  • 简介:用滚镀的方法在金刚石表面镀Ni层和纳米Si3N4/Ni复合镀层,用扫描电子显微镜观察金刚石镀前和镀后的表面形貌,用DKY-1型单颗粒抗压强度测定仪测量金刚石单颗粒的抗压强度。用热压烧结的方法得到铁基结合剂金刚石节块,在INSTRON-5569型万能材料试验机上测量节块的抗弯强度,在NMW-1立式万能摩擦磨损试验机上测试节块的耐磨性。结果表明:在金刚石表面镀Ni层和纳米Si3N4/Ni复合镀层后,表面镀层均匀,纳米Si3N4/Ni复合镀层比纯Ni层更致密,更平滑,晶粒更细小;纳米Si3N4/Ni复合镀层金刚石单颗粒有更高的抗压强度;纳米Si3N4/Ni复合镀层金刚石铁基结合剂节块有更高的抗弯强度和更优良的耐磨性。

  • 标签: 纳米Si3N4/Ni 复合电镀 铁基结合剂 金刚石节块 表面形貌 力学性能
  • 简介:通过金相显微镜(OM)、扫描电镜(SEM)和动态热机械分析仪(DMAQ800)等分析手段研究粉末冶金法制备的Ti-47Al-2Cr-2Nb-0.2W(原子分数,%)合金微观组织对其阻尼性能的影响。研究结果表明:Ti-47Al-2Cr-2Nb-0.2W合金初始组织为近γ组织,其阻尼性能最差,在振幅为100μm时,损耗因子仅为0.007;在1330℃下保温15min空冷可获得细小全层片组织,层片晶团的平均尺寸约为200μm,其损耗因子在振幅为100μm时达到0.012。随温度升高或保温时间延长,层片尺寸和晶团尺寸明显增大,合金阻尼性能下降,保温120min时层片晶团的平均尺寸约为510μm,其损耗因子在振幅为100μm时为0.009。细小全层片的阻尼性能最好,而双态组织的阻尼性能介于近γ组织和细小全层片组织之间。

  • 标签: 钛铝基合金 显微组织 阻尼性能
  • 简介:以Zr和B4C等粉末为原料,采用喷涂和反应烧结方法在钼合金表面形成陶瓷涂层,研究反应烧结工艺对涂层表面形貌、相组成和相结构的影响,再通过硅扩散反应形成抗氧化涂层,研究抗氧化涂层对钼合金在1500℃静态抗氧化行为的影响。结果表明:钼合金表面Zr-B4C在1700℃反应烧结2h形成多孔陶瓷结构,烧结产物主要含ZrC及少量的Mo2C和MoB等物相。涂层在1500℃抗氧化寿命达10h以上,1500℃氧化1h,质量增加速率为1.175mg/cm^2

  • 标签: 反应烧结 抗氧化涂层 组织形貌 抗氧化性能 MO合金 Zr-B4C
  • 简介:基于轻质、高强和耐磨等诸多优势,铝基碳化硼复合材料已成为集结构/功能一体化的新型材料。本文采用粉末冶金及轧制方法,制备出厚度3.5mm、碳化硼质量分数为33%的B4C/Al复合材料板材,并对其疲劳性能和断裂机制进行分析。在1×107循环次数下,铝基碳化硼复合材料板材的疲劳强度达到110MPa。采用SEM对疲劳断口进行观察,结果表明B4C/Al复合材料疲劳断口可清楚的看到裂纹的萌生、扩展和失稳断裂的典型特征,但存在多种形式的疲劳启裂源。疲劳裂纹扩展路径取决于裂纹尖端塑性区的半径和B4C颗粒的间距大小,当增强颗粒的间距小于塑性区半径时,裂纹主要沿着颗粒的连接界面或断裂的碳化硼颗粒扩展,当增强颗粒的间距大于塑性区半径时,有利于裂纹尖端钝化,减缓裂纹的扩展和方向改变。

  • 标签: 铝基碳化硼复合材料 疲劳性能 断裂机制 疲劳断口
  • 简介:采用电场、磁场、应力场和温度场多场耦合成形与烧结一体化技术制备高致密Fe-2Cu-2Ni-1Mo-0.8C合金,利用光学显微镜和扫描电镜对该合金的显微组织以及磨损表面进行观察和分析,重点研究耦合外加脉冲磁场对合金耐磨性能的影响。结果表明,在电场、应力场和温度场三场耦合放电等离子烧结技术的基础上进一步耦合适合的脉冲磁场,可明显改善烧结合金微观组织和合金元素分布的均匀性,不仅提高合金的耐磨性,同时还可显著提高合金的耐磨性能均匀性。在峰值电流、基值电流、频率、占空比分别为2700A、360A、50Hz和50%的脉冲电流以及烧结压力为30MPa的条件下烧结铁基合金粉末3min,耦合外加脉冲磁场强度为2.36×106A/m时,烧结材料的耐磨性能最佳,合金的磨损机制主要为粘着磨损。

  • 标签: 铁基合金 多场耦合烧结 组织 摩擦磨损性能
  • 简介:基于国外定向凝固氧化物/氧化物共晶复合陶瓷的晶体生长动力学行为的研究成果,阐述其动力学机制,分析动力学因素对微观结构形态的影响,探讨晶体生长热力学、动力学行为与微观结构形态之间的关系,同时结合以燃烧合成、快速凝固技术制备的新型高强韧A12O3/ZrO2(Y2O3)共晶复合陶瓷,探讨共晶复合陶瓷在快速凝固条件下的晶体生长动力学行为。结合定向凝固与快速凝固两种晶体生长机制,得知过冷度、凝固界面前沿的温度梯度是影响晶体生长方式的重要因素,且受二者决定的凝固速率(即晶体生长速率)则决定材料的最终微观结构与形态。

  • 标签: A12O3/ZrO2(Y2O3)共晶复合陶瓷 定向凝固 快速凝固 共晶生长 动力学行为
  • 简介:采用粉末冶金快速热压法制备B4C/Al中子吸收材料,对其进行T6态热处理,通过对材料的密度、硬度与抗弯强度等性能的测试以及材料微观组织、物相组成和弯曲断口形貌的观察与分析,研究成形压力、热压压力与温度以及B4C颗粒含量的影响。结果表明,B4C/Al复合材料的物相组成为Al和B4C;B4C颗粒均匀地镶嵌在基体中,颗粒与基体结合紧密。材料密度随压制压力增加而增大,随B4C含量增加而降低,在热压压力和温度共同作用下,铝合金液充分填充压坯孔隙从而实现高致密。当B4C的质量分数为30%时,在150MPa预成形压力下压制、530℃/10MPa条件下热压后所得B4C/Al复合材料的相对密度最高,达到99.87%,断裂方式为韧性断裂。经T6态热处理后,硬度HB和抗弯强度均提高,分别达到123.49和394.117MPa,断裂方式转变为脆性断裂。

  • 标签: 快速热压 B4C/Al T6态热处理 力学性能 断裂方式
  • 简介:采用Al-5Ti-B变质剂对过共晶Al-18Si合金进行反向变质处理,用光学显微镜观察合金的组织与形貌,研究变质剂加入量、变质温度和冷却速度对初晶硅的尺寸、形态和面积分数以及共晶组织的影响。研究表明:当Al-5Ti-B加入量(质量分数)为0.3%时,变质处理后Al-18Si合金中的初晶硅和共晶硅尺寸明显减小,初晶硅的面积分数减小;与其相比,变质剂加入量增加到0.6%时,初晶硅尺寸变化不明显,但共晶硅进一步细化;随冷却速率降低,变质处理后Al-18Si合金中初晶硅相的数量减少,但Si颗粒尺寸明显增大,并且共晶硅细化;与Al-18Si合金在720℃变质相比,该合金在780℃变质处理时,初晶硅的尺寸增大,但初晶硅的面积分数显著减小;合金在850℃变质处理后初晶硅的尺寸、面积分数都比720℃变质处理后明显减小;随变质温度升高,Al-Si合金中的共晶硅明显细化。

  • 标签: 过共晶铝硅合金 初晶硅 共晶硅 反向变质 变质机理
  • 简介:采用阴极弧蒸发技术在A120,、低合金钢和硬质合金刀片上沉积Ti与Al原子比相近的Al-Ti-N和Al-Ti-Ni.N涂层,借助X射线衍射(XRD)、扫描电镜(SEM)、纳米压痕、划痕实验和氧化实验,研究Si掺杂对Al-Ti-N涂层的结构、力学性能和抗氧化性能的影响。结果表明:Al-Ti-N涂层为以立方为主的立方和六方的两相结构,Si掺杂可降低TiN中Al的固溶度,使涂层转化为以六方为主的六方和立方的两相结构;Si的加入导致涂层硬度由34.5GPa降到28.7GPa;Si掺杂引起涂层的应力增加,从而导致涂层与基体的结合强度降低;Al-Ti-N涂层的抗氧化性能随si的加入而显著改善,抗氧化温度提高到1000℃以上。

  • 标签: Al-Ti-N Al-Ti-Si-N 硬度 抗氧化性 涂层
  • 简介:为了减少锂离子电池正极材料与电解液的相互作用,用沉淀法在LiNi0.8Co0.2O2表面包覆一层Al2O3,并通过电化学测试、扫描电镜和X射线衍射研究其表面形貌和晶体结构。结果表明,经过表面包覆后,有效地抑制了电解液对正极材料的侵蚀,虽然初始放电容量略有降低,但循环性能明显改善;Al2O3包覆量对LiNi0.8Co0.2O2电化学性能存在影响,包覆量为0.7%(质量分数)的样品性能最优。

  • 标签: 锂离子电池 LINI0.8CO0.2O2 表面包覆
  • 简介:以六水合氯化钴(CoCl2·6H2O)和水合三氯化钌(RuCl3·3H2O)为前驱体,采用胶体法制备超级电容器用(RuO2/Co3O4)·nH2O复合薄膜电极材料。用X射线衍射仪以及CHl660C电化学工作站对该复合薄膜的物相结构及电化学性能进行表征。结果表明:当COCl2'6H20和RuCl3·3H2O的物质的量比n(Co):n(Ru)为2:1时,于350℃下热处理2.5h制备的复合薄膜电极具有优良的性能,在浓度为0.5mol/L的H2S04电解液中其比电容达到512F/g,500次充放电循环后比电容量保持在充放电循环前的96.1%;充放电电流为0.01A时,内阻为1.2Ω。

  • 标签: 超级电容器 胶体法 薄膜电极 比电容