学科分类
/ 1
14 个结果
  • 简介:ABSTRACT: Hybrid High-voltage Direct Current Transmission Technology is developed on the basis of traditional direct current transmission technology and has broad application prospects. This paper takes the Baihetan-Sunan hybrid-type HVDC transmission project that the State Grid Corporation is planning as an example, and analyzes the fault characteristics of the DC system in the event of DC short-circuit fault, Finally, the simulation model was built in PSCAD/EMTDC, and the result confirms the validity of the theoretical analysis KEY WORDS: Hybrid High-voltage Direct Current Transmission Technology; End-mixed DC project; Fault analysis. 摘要:混合直流输电技术是在传统直流输电技术的基础上发展而来的,具有广泛的应用前景。本文以国家电网公司正在规划的白鹤滩-苏南的受端联型直流输电工程为例,分析了该直流系统在发生直流短路故障时的故障特性,并最终在PSCAD/EMTDC上搭建了仿真模型,验证了理论分析的正确性。 关键词:混合直流输电技术;受端联型直流工程;故障分析。 DOI:10.13335/j.1000-3673.pst.2014.01.论文序号 0 引言 混合直流输电系统在结构上结合了LCC-HVDC与VSC-HVDC两种常用的直流输电结构,在性能上则包含了这两种直流输电方式各自的优势。混合直流输电系统的结构大多采用整流侧LCC–HVDC,逆变侧VSC-HVDC的接线方式。这种连接方式的优势有:既发挥了LCC-HVDC系统输送容量大,系统造价低的优势,又解决了LCC-HVDC系统不能向弱源/无源网络供电的问题;逆变侧采用VSC的结构所以不会出现换相失败的现象;且VSC-HVDC控制灵活,可以独立控制有功功率和无功功率;直流电压稳定,可以改善直流系统的运行性能等[1-2]。 受端联型直流输电是对混合直流输电技术的进一步探究与发展的结果。与常用的混合直流输电系统不同,在结构上,受端联型直流输电系统在整流侧采用LCC-HVDC,而在受端逆变侧则采用LCC与VSC相串联的结构。这样即使逆变侧高压阀组LCC发生换相失败,低压阀组的VSC仍可以维持运行状态,直流系统仍可以输送一定的功率至交流电网。除此之外,LCC所采用的晶闸管具有单向导通性,在直流线路发生短路故障时可以阻拦VSC产生的故障电流,减小了故障对直流系统的影响。在实际的工程应用上,考虑到LCC-HVDC与VSC-HVDC所能传输容量的较大差距以及现实中各配电单位的分布。为实现整流侧与逆变侧传输容量的配平、电能输送更加灵活,可以在受端采用多端口并联的连接方式。这种结构可以根据实际情况需要并联接入更多的VSC结构,便于线路的改造。 国家电网公司正在规划的白鹤滩-苏南工程建成之后将会是我国首例受端联直流输电工程。因此本文以该系统为主要研究对象,针对该系统的拓扑结构、阐释系统运行原理并提出可行的协调控制策略。并根据在实际工程中可能发生的故障位置,分析该系统的故障响应,在PSCAD/EMTDC中建立对应的受端联直流系统模型,并验证理论分析。 1 受端联直流系统拓扑结构及协调控制策略 1.1拓扑结构 白鹤滩-苏南受端联型直流输电系统采用的是完全对称的双极结构,线路电压等级为±800kV,额定传输功率为8000MW。每一极的整流侧LCC由两个12脉波换流器串联构成;逆变侧由一个12脉波换流器与3个并联的两电平VSC串联组成。结构图如图1所示。 图1受端联型直流系统拓扑 Fig. 1 End-mixed DC system topology 图中 , 是为下文研究直流系统故障特性而选取的故障点所在的直流线路。建立该直流输电系统的等效模型,为方便计算,取直流系统中的一极、并联的3端VSC取其中一端。等效模型如图2所示。 为各换流阀交流侧线电压有效值; 为换相电感。 为整流侧直流电压; 为逆变侧高压阀组直流电压; 为逆变侧低压阀组直流电压; 为线路直流电流; 为线路等效电感。 为线路等效电阻。 图2受端联型直流系统等效模型 Fig. 2 Equivalent model of End-mixed DC system 对于整流侧,当换流器触发角为 时。 (1.1) 对于逆变侧高压阀组LCC,设换流器熄弧角为 ,则; (1.2) 而对于逆变侧低压阀组VSC,其采用了PWM调制技术,输出的直流侧电压为: (1.3) 其中, 为直流电压利用率, 为PWM调制比 。所以直流电流的表达式为: (1-4) 1.2控制策略 受端联直流输电系统整流侧LCC的控制策略与传统的LCC-HVDC控制策略一致,采用定直流电流控制方式,并辅以最小触发角控制。 图3整流侧LCC定直流电流控制 Fig. 3 Rectifier side LCC fixed DC current control 为了使直流系统能够稳定正常运行,逆变侧需要能控制系统的直流电压,高压阀组和电压阀组各分担400kV的直流电压。逆变侧高压阀组LCC采用定熄弧角控制、低压阀组VSC采用定直流电压控制和定交流电压控制。 图4逆变侧LCC定熄弧角控制 Fig. 4 Inverter side LCC fixed arc angle control 图5逆变侧VSC控制逻辑图 Fig. 5 Inverter side VSC control logic diagram 2 故障特性分析 双极直流系统常见的短路故障有单极接地故障和双极短路故障[3],由于此受端联型直流输电结构为双极结构,正负极完全对称,所以该直流系统的单极接地故障响应与双极短路故障响应完全一致,所以本文以单极接地故障来分析受端联型系统的直流故障响应。通常情况下研究直流系统故障,主要是研究整流侧与逆变侧之间直流线路发生故障的情形,即图1中 所示线路位置。然而受端联型系统由于其结构具有特殊性,逆变侧是由两种不同类型的换流器串联组成的,因此故障发生在逆变侧LCC与VSC之间线路的这种情况也有研究的价值。故障点为图1中 所示位置。 系统发生直流故障,故障点的故障电流来源主要有两方面,一方面是电源经换流器向故障点馈入电流;另一方面是系统中的储能元件经线路向故障点放电。 2.1整流侧与逆变侧间线路单极接地 当单极接地故障发生在线路 上时,系统电流流向如图6所示。 图6整流侧与逆变侧间线路单极接地故障电流流向 Fig. 6 Single pole-to-ground fault current flow between rectifier side and inverter side 逆变侧没有故障电流流入,这是因为当单极接地短路故障发生后,VSC换流器上电容储存的电压不能突变,它将会对逆变侧的LCC施加一个值为400kV的反向电压使其关断,导致逆变侧的电流无法流入故障点,该现象发生在图6中绿线所框位置。 电源经整流侧LCC向故障点馈入电流,故障时的电流暂态响应可用式(2.1)表示。 (2.1) 其中, , 为整流端到故障点线路的等效电感和电阻, 和 为比例参数和积分参数。短路故障发生后,线路直流电流会快速增大,由图3整流器的控制逻辑图可知,系统会增大触发角以期减小线路直流电流,同时,线路直流电压因短路故障迅速下降至接近为零,电流指令 会被低压限流环节所限制[4],线路故障直流电流会最终在整流器触发角的控制下稳定在0.55pu。 2.2逆变侧VSC单极故障接地 当短路故障点位于直流线路 时,直流系统内部的电流流向如图7所示。 图7逆变侧VSC直流线路单极接地故障电流流向 Fig. 7 Single pole-to-ground fault current flow on Inverter side VSC 由于逆变侧高压阀组LCC采用的是定熄弧角控制方式,由式(1.2)可知,输出的直流电压主要受熄弧角指令和网侧电源电压影响, 处发生短路故障对这两个参数的影响甚微,因此逆变侧LCC可以维持住400kv的直流电压的输出。它与整流侧LCC、短路点和大地构成了新的闭合回路,经换流器控制环节的调整最终维持在新的稳态继续运行。 故障点右侧馈入的电流则是由逆变侧VSC提供的,故障点位于 线路上时,结合联系统的拓扑以及LCC与VSC控制策略的独立性。可知系统内其他的LCC结构并不会对VSC的放电过程产生影响。因此在检测到线路故障后,VSC会闭锁IGBT,并会经电容放电、二极管续流以及电网电源经反并联二极管馈入三个阶段向故障处传递直流电流[5-7]。 1)电容放电阶段: 图8 电容放电阶段等效电路 Fig. 8 Capacitor discharge stage equivalent circuit 图中所示 、 为换流器到短路点等效电阻和等效电感。 为电容电压。根据等效电路图可列齐次微分方程: (2.2)

  • 标签:
  • 简介:摘要:当前我国经济水平的快速发展,同时也推动了工业行业的进程,煤炭等能源的消耗随之而增加,导致我国面临资源紧缺的情况。通过技术方面的改革能有效促进到电厂锅炉煤掺烧技术的发展,有效提升到煤炭的利用率而减少到资源的浪费。

  • 标签: 电厂锅炉 煤泥掺烧 理论分析
  • 简介:摘要:受传统工业生产的影响,我国的发电厂多数为火力发电厂,在发电站用到的燃料资源多数为煤炭资源。煤炭资源是世界三大能源之一,具有极高的工业利用价值,但是煤炭资源并不是日益增多的,相反会随着人类的使用而日益减少。因此,煤炭资源的减少会间接地影响到火力发电厂的电力生产,如何提高煤炭资源在火力发电厂发电中的利用率,成为了很多火力发电厂共同面临的难题。随着电厂锅炉煤掺烧技术的出现,这种问题才得到了有效的缓解。

  • 标签: 电厂锅炉 混煤掺烧技术 节能运行 措施
  • 简介:摘要:为了满足电力生产需求,火电厂在电力生产上不断创新技术,锅炉煤掺烧就是一种有效手段。通过技术改革,促进电厂锅炉煤掺烧技术的发展,能够提高电厂锅炉的煤炭利用率,减少资源浪费,降低燃煤成本,并有效缓解我国资源吃紧的现状。文章首先指出煤掺烧技术的优势,然后介绍了锅炉煤掺烧技术的改进方法,最后阐述了输煤系统的节能运行措施和煤场管理工作的改进措施,以供参考。

  • 标签: 火电厂 锅炉混煤掺烧 优势 节能运行 改进措施
  • 简介:摘要:风力发电设备的大力发展推动了国家经济高度的上升,是国家经济发展中不可缺少的力量。国家大力推动风力发电设施是为了让供电方式更加环保。但随着风力产能的不断上升,风电机组在使用的过程中所耗费的容量也在逐渐上升,低风速已经不能够满足风机的正常工作,这就要将支撑所需的塔筒进行相应的增加,让风机得到的风速比原基础的风速更大。本文主要将风机钢塔筒与钢塔筒的实用性进行分析。

  • 标签: 风机 钢塔筒 钢混塔筒 实用价值
  • 简介:摘 要:浮选分离法在体外再生床树脂分离中有很大的优点。本文介绍了浮选分离的基本机理,并结合设具体设备情况,就浮选分离法在锅炉补给水处理床体内再生分离过程中的运用进行了初探。

  • 标签: 锅炉补给水处理混床 再生 应用 浮选分离法
  • 简介:摘要: 机组大修质量的好坏直接影响着整个机组的安全运行,本文列举了小型流式水电站机组在大修过程中存在的主要问题,根据检修工作实践,提出了对应的处理对策,有利于保证机组检修质量,提高机组检修效率,从而提高机组发电效益。

  • 标签: 混流式机组 大修 检修质量
  • 简介:摘要: 随着近年来我国社会建设与经济发展的不断推进,我国建设技术也得到的空前的发展,电力工程作为支持各行各业稳定发展的基本受到了社会各界的广泛关注。提高电力设备的安全性,稳定性以及延长电力设备的使用寿命就要涉及到合理利用电力用油添加。本文系统论述了科学、合理的添加电力用油的重要性,以及对电力用油的选择以及添加方法做了重点概述,希望能够对 电力用油添加的作用补加相关研究提供一定的借鉴参考。

  • 标签: 电力用油 添加剂选择 方法
  • 简介:摘要: SCR 脱硝工艺是火电厂常用的烟气处理工艺,但是 SCR 脱硝催化运行过程中会出现催化活性下降,影响到脱硝效率。因此,分析 SCR 脱硝催化失活的原因,对提高火电厂脱硝效率具有重要意义。

  • 标签: SCR 脱硝 催化剂失活 火电厂 节能减排
  • 简介:摘要:本文针对SCR脱硝还原液氨改尿素技术在330MW煤粉锅炉的应用,对液氨改尿素技术特点进行分析比较,介绍某电厂改造采用催化水解改造的成功经验,改造后烟囱排口NOX小于40mg/m3,保护投入率100%,脱硝系统全部数据满负荷运行要求。并且解决了尿素和液氨系统在线切换、尿素溶解区异味等技术难题,并增加了安全仪表控制系统。为其以后的推广做出了范例。

  • 标签: SCR脱硝还原剂 液氨 尿素 改造
  • 简介:【摘要】近年来,火电厂对于控制烟气污染物的排放,尤其是氮氧化物的排放愈加重视。选择性催化还原( SCR )法是燃煤发电企业应用最多的烟气脱硝技术,其中催化是整个系统中最重要的部分。一旦催化失活,氮氧化物的排放量将会增加。 为了计算出火电厂SCR脱硝设备催化的活性,本课题针对火电厂脱硝设备的温度、出入口二氧化氮浓度等参数,提出一种由单片机控制的检测方法,最终实现对温度、出入口二氧化氮浓度的低成本、高精度的测量。

  • 标签: SCR 脱硝 活性
  • 简介:摘要:为了以较低的投资和运行成本实现SO2的超净排放,在石灰石-石膏烟气脱硫系统中投加脱硫增效。结果表明:在进气SO2浓度为2800-3000mg/Nm3、脱硫增效投加量为450mg/L的条件下,净烟气SO2≤30mg/Nm3,可停用1台循环泵并节约电耗720kWh;投加脱硫增效对脱硫装置浆液pH值、石膏、亚硫酸钙、碳酸钙、氨氮以及COD等参数无显著影响,石膏品性以及脱硫废水的处置难度未受影响。

  • 标签: 脱硫增效剂 脱硫效率 石灰石-石膏法湿法脱硫
  • 简介:摘要: 是大气的主要污染源,它不仅破会坏平流层中的臭氧,还会引起酸雨、酸雾和光化学烟雾,对动植物的健康也构成极大威胁。火电厂是 的主要排放源之一。使用天然气等清洁能源代替传统的煤燃料,可大大减少 的排放,但是燃机电厂的烟气量较大,故燃机电厂的 排放总量也不容忽视。本文综述了 控制技术及 SCR催化的现状,并对其应用前景进行展望。

  • 标签: 燃气轮机 控制技术 催化剂 应用研究
  • 简介:摘要 : NOx是大气的主要污染源,它不仅破会坏平流层中的臭氧,还会引起酸雨、酸雾和光化学烟雾,对动植物的健康也构成极大威胁。火电厂是 NOx的主要排放源之一。使用天然气等清洁能源代替传统的煤燃料,可大大减少 NOx的排放,但是燃机电厂的烟气量较大,故燃机电厂的 NOx排放总量也不容忽视。本文综述了 NOx控制技术中的 SCR技术及 SCR催化的现状,并对其应用提出了相关建议。

  • 标签: 燃气轮机 NOx 燃机催化剂