简介:由于液浮陀螺仪常规测试方法偏重于正常陀螺性能参数的测试以及试验条件脱离实际使用状态,常使存在缺陷的陀螺无法准确筛选出来。为了弥补液浮陀螺仪常规测试方法不足,提高陀螺仪的检测可靠性,在常规试验的基础上增加了浮子迟滞试验。对浮子迟滞试验检测技术从试验机理和技术实现上进行了较为详细的分析和研究。在力矩反馈测试系统反馈放大器的输入端施加高精度三角波信号,在陀螺仪浮子沿输出轴在选定的角度范围内周期性缓慢匀速摆动过程中完成了陀螺力矩、阻尼力矩、角弹性力矩、常值干扰力矩及摩擦型干扰力矩的检测。利用浮子迟滞试验技术在液浮陀螺仪多余物检测以及最佳工作温度优选方面取得了很好的实用效果,是提高陀螺仪性能检测可靠性和故障定位准确性的一种关键检测技术。
简介:针对多星座情况下多卫星同时故障时的接收机自主完好性检测的问题,分析了多卫星同时故障的原因及特点,提出基于极大似然比的分层完好性检测方法。通过奇偶向量矩阵的计算,根据极大似然估计,进行故障检测与隔离,利用全量检验统计值与部分检验统计值之间的关系进行故障卫星的确定,并利用接收机的数据进行仿真验证。仿真结果表明,本方法可以快速有效地实现多星座情况下的接收机自主完好性检测,检测出并隔离故障卫星。
简介:移动机器人的目标检测要求其对特定的静止或运动物体进行运动分析及检测。以Voyager-III移动机器人系统为研究对象,实现非理想光照下,对橘红色目标足球的运动检测。提出在传统三帧差分法基础上,先利用Markowitz投资组合模型进行足球目标的特征提取,将场地非感兴趣的目标中,出现全部像素值发生变化的目标去除,再进行图像帧间差分。利用CCD摄像机对比赛环境中足球的运动轨迹进行录制,选取具有代表性的各帧视频图像、Markowitz算法优化后的差分图像和跟踪图像,结果表明跟踪图像不含非目标物的干扰,克服了差分图像存在空洞的问题,为移动机器人提供了一种实用的运动目标检测方法。
简介:通过理论推导提出了一种评价高速流动PIV示踪粒子随流能力的松弛特性分析模型,在法向Mach数大于1.4时具有良好的适用性.将新模型应用于试验测量,发展了高速流动PIV系统和示踪粒子布撒技术,验证了高速流动PIV的定量化测量能力.针对空间发展的二维超声速气固两相混合层,数值模拟了不同Stokes数和对流Mach数(M_c)下的粒子跟随性以及弥散和迁徙运动,结果表明:相同对流Mach数,粒径越小的示踪粒子跟随性越好,Stokes数在[1,10]范围内的粒子有最大扩散距离.示踪粒子的直径大小决定其在超声速混合层大涡拟序结构中的分布特征,且粒径越小,气体与粒子的掺混越剧烈.相同粒径的粒子,对流Mach数越大跟随性越差.
简介:为提高攻击导弹同时面对目标飞机及其防御导弹情况下的命中概率,基于微分对策理论,对攻击导弹的制导律进行了设计。应对独立控制的多对象博弈问题,微分对策理论具有天然的优势,且相比于最优制导律,微分对策制导律对于目标机动估计误差和机动策略具有更强的鲁棒性。所推导的微分对策制导律进一步考虑了攻击导弹的控制有界性,且适用于攻击导弹、目标飞机和防御导弹具有高阶线性控制系统动态的情形。为验证制导律性能,进行了非线性系统仿真,结果表明该制导律在成功归避防御导弹的同时可实现趋于零脱靶量的目标拦截。攻击导弹为实现规避和攻击的双重任务,仅需要保持相比于防御导弹两倍左右的机动优势。
简介:针对惯导平台连续翻滚自标定中安装误差标定精度不高这一现状,提出了一种解决方案。通过对惯性器件的输出误差模型和安装误差的分析,建立了系统的姿态动力学方程和观测方程,利用输出灵敏度理论分析了系统的可观性,指出加速度计安装误差可观性较差是影响标定精度的主要原因。利用Kalman滤波中的估值方差矩阵计算了安装误差之间的相关系数,计算结果表明可观性差是由安装误差之间的线性相关性造成的,并确定了具体的不可观参数。以加速度计输入轴为基准建立平台坐标系可以减少安装误差项,使所有的安装误差的变得可观。最后的仿真结果表明在新的方案下,安装误差的估值偏差小于5",标定精度得到了显著提高。
简介:采用理论分析和数值模拟相结合的方法,系统研究了尺度自适应模拟(scale-adaptivesimulation,SAS)和大涡模拟(large-eddysimulation,LES)的关联性问题.在理论分析方面,对比分析了系综平均和滤波的定义、Spalart-Allmaras(SA)湍流模型和动态亚格子(subgrid-scale,SGS)模型关于湍流黏性系数的求解方式.理论分析结果表明,系综平均等价于盒式直接滤波,SAS和LES的控制方程在数学形式上具有一致性;SAS存在过多的湍流耗散,主要来自于SA输运方程中的扩散项.在数值模拟方面,选取来流Mach数0.55,Reynolds数2×10-5的圆柱可压缩绕流为分析算例.计算结果表明,SAS和LES预测的大尺度平均流场信息几乎一致,SAS预测的湍流脉动信息略低于LES.SAS在圆柱近尾迹区的湍流耗散过大,而在稍远的尾迹区几乎能够完全等效于LES.