简介:首先采用基于混合高斯模型与椭圆肤色模型进行手势分割,分割出手势区域,使用卡尔曼滤波器进行手势跟踪,获得手势中心点的位置。在此基础上,记录各帧中心点位置,得到运动轨迹,利用提出的轨迹模板匹配方法对动态手势进行识别。该方法利用基本的几何特征便可完成手势运动轨迹的设置与识别,无需特征选择或训练样本的搜集。最后,采用基于Zynq-7000的Zedboard平台对该算法进行实现,并采用HLS硬件加速工具进行算法加速。实验结果表明,该算法可实现较精确的手势识别,接受弹性的输入采样,识别正确率在95%以上,且通过硬件加速后,可在嵌入式平台中实时识别,具有较好的实时性。