简介:对于两个相依线性回归方程组成的系统(1.1),本文提出了β1的待定系数估计β^*1(k,c)=(x′1x1+k1)^-1(x′1y1-cσ12/σ22x′1N2y2),其中岭参数k≥0.c是待定系数.与β^*1(k,c)对应的非限定两步估计记为β^41(T,k,c).当c=1时β^*1(k,1)=β1(k)和β^*1(T,k,1)=β1(T,k)等干[6]引入的一双有偏估计,结果表明总可以选取适当的c值和k值使β^*1(k,c)和β^*1(T,k,c)在均方误差阵准则下分别优于β1和β1(T),并讨论了c值的最佳选择问题.
简介:考虑一般的分块半相依线性回归(SUR)模型及其相应的简约模型,给出简约模型下未知回归系数及其可估函数的协方差改进估计仍是分块SUR模型下相应参数的协方差改进估计的一个充要条件.
简介:高斯过程机器学习是基于严格的统计学习理论而新发展的方法,该方法在求解小样本、高维数的非线性问题上具有一定的适应性.针对采用直接蒙特卡洛方法进行功能函数计算代价较高的结构可靠度分析时计算效率过低的瓶颈问题,提出了一种基于高斯过程回归模型的直接蒙特卡洛模拟方法.该方法利用有限元等数值方法构造少量的学习样本,通过学习后的高斯过程回归模型重构隐式功能函数,直接建立随机变量与功能函数值的映射关系,进而结合直接蒙特卡洛方法推求结构的失效概率与可靠指标.算例研究表明,该方法简单易行,与传统蒙特卡洛模拟法相比较,计算效率明显较高,且易于与各种工程结构分析程序或商业计算软件相结合.