简介:数据流的概念会随着时间的变化而变化,例如天气预报和网络监控。这种随时改变概念的现象叫做概念漂移。如果不处理好概念漂移不仅降低聚类的质量,并且还会导致错误的聚类结果。现有的概念漂移算法大多都依据分类算法,根据分类算法中的错误率来判断概念漂移。然而,在随时变化的数据流中很难发现类标签。在聚类检测概念漂移中,很多聚类算法都是再概念漂移检测之前,所以当发生概念漂移的时候还要重新聚类。我们提出了一种基于密度网格的数据流聚类和概念漂移检测算法,这个框架采用了一种策略动态地改变滑动窗口。由于用到了密度网格技术,它提升了DCDA检测算法的效率,并且利用可变滑动窗口替换了固定滑动窗口以适应数据流的变化。实验结果证明我们的框架在准确率和时间效率上好于DCDA。
简介:关联规则研究数据库中一组互不相属对象之间的相关性,挖掘出具有一定意义的关联关系、挖掘算法如Apriori、FP-Growth等,这些算法需要反复多次扫描整个数据库导致I/O负载增加,降低了CPU的性能.文章通过对数据库进行转置和平行变换以减少扫描的次数,从而提高算法效率.
简介:传统的传播算子(PM)算法利用矩阵的线性运算代替特征值分解(EVD)得到噪声子空间,在一定程度上降低了运算量,但在整个空间谱的遍历搜索仍需较大计算量,且在低信噪比的情况下估计性能较差.因此,针对空域的一维信号提出了多重镜像压缩的传播算子(MIC-PM)算法,将整个空域等间距地分为多个切片,将原始噪声子空间通过Hadamard积变换,使之从一个切片镜像映射到另一个切片,得到映射噪声子空间,通过映射得到的噪声子空间与导向矢量的正交性得到真实DOA和镜像DOA.理论分析和仿真实验证明,MIC-PM算法能够将PM算法的运算量大大降低,在低信噪比情况下估计精度有所提高.
简介:对于椭圆型界面问题,针对浸入有限元法的离散方程组,基于四类利用界面曲线信息和跳跃条件构造的浸入式插值延拓算子,建立经济的瀑布型多重网格法,数值实验结果表明,基于高次浸入式插值延拓算子的经济的瀑布型多重网格法更具有效性。