简介:利用常规观测资料、NCEP再分析资料、卫星和雷达拼图产品等,结合WRF中尺度数值模拟,对2013年5月22日发生在山西省中南部的强对流天气进行了分析。结果表明:此次强对流天气过程中,河套地区正涡度平流的持续输送是500hPa切断涡旋形成、维持和发展的重要原因;低层冷平流沿其前方输入,后部有更强的暖平流输入,使涡旋不断加深发展,在其附近激发孤立对流云团,孤立云团上空存在高层辐散、低层辐合的垂直结构,使得其上空上升运动持续加强,孤立对流云团得以维持和发展,其间形成的γ-中尺度和α-中尺度强对流云团是造成强对流天气的直接原因,而地面海上高压后部水汽的持续加强和高空脊前干空气南侵,产生明显干锋生作用,是强对流的重要触发机制。雷达组合反射率因子拼图显示,此次强对流过程是由单体回波发展合并加强造成的,这些单体回波的演变经历了“单体—加强合并—带状回波—弓形回波—减弱消亡”的过程;整个过程分为2个阶段,其回波面积、强度、移动速度不同,造成强对流天气特征差异明显。此次强对流天气存在3种类型,其温湿廓线结构及环境参数特征存在明显差异,可作为判断强对流天气类型的指标。
简介:利用1962—2008年辽宁强对流性天气观测资料,对冰雹、龙卷、雷雨大风和短时强降雨4种强对流性天气的气候特征进行统计分析。结果表明:辽宁冰雹沿海少、内陆多,内陆又以东、西部山区为最多;6月和9月为多发期;15—16时出现最多;83.9%的冰雹持续时间为0—10min。龙卷沿海多、内陆少;7月和9月为多发期;13—14时和17—18时发生最多;75.0%的龙卷持续时间为5—20min。雷雨大风沿海和内陆均存在多发区域;5—6月为雷雨大风多发期;15—16时出现最多。短时强降雨自西向东逐渐增加,主要出现在6—8月,21—22时出现次数最多;短时降水极值为26—105mm/h。
简介:以由浮力和表面张力引起的方腔内自然对流为研究对象,分析两种驱动力引起的不稳定性对热对流形成的贡献,探求研究热对流稳定性的新方法。利用数值模拟优势,调节相应准则数获得浮力与表面张力共同作用以及各自单独作用下的热流场,并以正交分解法抽出各流场的基本流动模式。通过各流场的速度、涡量以及基本流动模式对比,得到结论基本一致,而利用正交分解法抽出流场的基本流动模式更能清晰地表明各驱动力引起的不稳定对热对流的贡献程度。
简介:在北京"7.18"强降水天气过程中,中尺度对流系统的启动、发展方式较为复杂,造成对流系统发展多样性特征的机制也存在差别。天气尺度动力条件和局地层结不稳定结构都表明,此次局地强天气的发生有良好的环境条件。通过高分辨率中尺度观测的分析表明,怀柔—密云地区存在孤立发展的对流系统,最终发展为多单体雷暴群;而在北京西南部线状对流的不连续传播发展特征十分显著。数值模拟结果表明,地面中尺度切变线的活动对北京东北部怀柔—密云地区对流系统的启动起了关键作用;在环境场与对流的相互作用机制下,北京西南部的中尺度对流系统的发展传播与重力波活动有密切关系。对流系统的表现形式和发展演变的多样性特征,体现了起支配作用的物理机制的差异。
简介:利用1960—2007年江西省87个地面气象站常规观测资料,对江西冰雹、雷雨大风(风速≥17m/s)和强降水(雨强≥30mm/h)3种强对流天气气候特征进行统计分析。结果表明,冰雹、雷雨大风和短时强降水年平均发生次数分别为13.7、181.4、123.8站次。冰雹和雷雨大风有明显的月际变化,冰雹站次峰值在3—4月,占总数的79.1%。雷雨大风站次有2个峰值,分别在7—8月和4—5月,占总数的44.3%和31.7%,且4月全省10站以上的大范围雷雨大风日数最多。自1990年以后,冰雹和雷雨大风呈逐年减少趋势。短时强降水主要出现在6—8月,占总数的70.3%,大范围短时强降水过程日数8月最多。在地理分布特征上,冰雹丘陵、山区多,平原少,赣东北最少,并有6个冰雹多发区;雷雨大风东多西少,平原和河谷或峡谷地区多山区少,赣西北最少,有5个雷雨大风多发区;短时强降水东多西少,南多北少,有5个高值中心。