学科分类
/ 5
92 个结果
  • 简介:采用粉末冶金组合烧结技术制备由Fe-Cr-Mo-P-Si-Cu-C凸轮和16Mn钢管为芯轴组成的中空凸轮轴,对凸轮的密度、硬度等物理性能、摩擦磨损性能和微观组织进行测试分析,研究烧结致密化机理,并与传统凸轮材料球墨铸铁的摩擦磨损性能进行对比。结果表明:Fe-Cr-Mo-P-Si-Cu-C凸轮材料在烧结过程中产生Fe-C-P三元液相,Cr、Mo元素溶解于液相中使得液相量显著增加,促进液相烧结,体积收缩率高达19.1%。凸轮材料的平均密度为7.51g/cm3,平均硬度(HRC)53.7,钢制芯轴形成牢固的冶金结合,扭矩高达1150N·m,连接可靠性较好;该凸轮材料的硬度传统球墨铸铁凸轮材料相近,耐磨性是球墨铸铁的3倍,质量减轻35%,满足发动机使用要求。

  • 标签: 粉末冶金 中空凸轮轴 组合烧结
  • 简介:将真空烧结的铁基合金奥氏体化、油淬后,在600~700℃温度下进行回火处理,保温1h,空冷。测试回火后合金的硬度和冲击韧性,并用金相显微镜、X射线衍射(XRD)、扫描电镜(SEM)观察和分析合金的组织、结构断口形貌,研究回火温度对铁基合金组织力学性能的影响。结果表明:随回火温度升高,第二相碳化物粒子M23C6的含量(质量分数)基本保持不变,约为3.5%;碳化物M6C的数量大幅减少,平均尺寸明显减小,碳化物M6C的第二相强化效果降低,硬度下降,同时基体组织软化,冲击吸收功增大。回火温度为675℃时,铁基合金保持较高的硬度40HRC,冲击韧性较回火前提高11%。回火处理后的铁基合金断口形貌为典型的沿晶断裂。

  • 标签: 铁基合金 回火温度 第二相粒子 断口分析
  • 简介:以炭纤维针刺整体毡为增强体,采用化学气相渗透(CVI)工艺制备出不同密度的炭/炭(C/C)多孔体,利用气压浸渍法将Cu合金渗入到C/C多孔体中制备C/C-Cu复合材料。在简支梁摆锤式冲击试验机上测试C/C-Cu复合材料的冲击性能,采用金相显微镜和扫描电镜观察材料的微观结构和断口形貌。结果表明:铜合金在C/C多孔体中分布均匀;C/C-Cu复合材料垂直方向的冲击韧性优于平行方向的冲击韧性;随C/C多孔体密度的增加,材料的冲击韧性先增加后降低。C/C多孔体密度适中(1.44g/cm3)时,C/C-Cu复合材料内炭纤维、热解炭、铜合金等组分协同作用,在平行和垂直2个方向的冲击韧性都达到最大值,分别为2.68J/cm2和4.45J/cm2,具有假塑性断裂行为的特征。

  • 标签: C C-Cu复合材料 C C多孔体 微观结构 冲击性能
  • 简介:采用喷射成形方法制备2124铝合金坯,探索其热轧致密化工艺,并研究热轧变形量和变形温度对材料显微组织和力学性能的影响。结果表明,材料最佳的热轧温度为450℃,在该温度下热轧可以保持喷射成形工艺制备的2124铝合金获得细小晶粒组织的优势,且轧件可以获得较佳的力学性能。热轧过程中,当总变形量小丁30%时,材料的致密化速度较快;当总变形量达到40%时,材料基本完成致密化。当热轧温度为450℃,变形量为80%时,喷射成形+轧制后材料的拉伸性能高于铸造+轧制的材料。对喷射成形+热轧材料进行T6处理,材料强度可较大提高,抗拉强度达到502.2MPa,伸长率为12.23%。

  • 标签: 喷射成形2124铝合金 热轧工艺 致密化 组织 力学性能
  • 简介:综合介绍了我国近年来对穿甲弹用高密度钨合金实施添加微量元素合金化强化和旋转锻造、扭转变形、静液挤压等形变强化的研究进展,以及对于绝热剪切机理和数值模拟计算的研究现状,并介绍了机械合金化制备纳米钨合金复合粉末、温压成形及预氧化活化烧结等特种制备技术方面的最新试验研究进展。通过全面分析目前我国穿甲弹用高密度钨合金试验研究中存在的一些主要问题,提出我国穿甲弹用高密度钨合金今后研制的主攻方向,以及促进高性能穿甲弹用钨合金研制应采取的策略措施。

  • 标签: 穿甲弹 钨合金 研究现状 发展展望
  • 简介:以铝热反应法制备无昂贵合金元素添加的纳米结构白口铸铁,采用XRD、OM、SEM和拉伸及压缩等分析、测试手段研究碳含量对纳米结构白口铸铁组织和力学性能的影响。结果表明:随碳含量增加,白口铸铁由不同形态的珠光体和渗碳体组成,其中层片状珠光体含量减少,粒状珠光体含量增加;层片状珠光体的片间距分别为165、231和250nm。碳含量为3.5%,3.7%和4.3%的纳米结构白口铸铁的维氏硬度分别为552、577和575HV,抗压强度为2224、2460和2220MPa,抗拉强度为383、416和245MP,均呈现先增大后减小的趋势;伸长率为3%、2.5%和1%,呈现逐渐下降的趋势。无昂贵合金元素添加的纳米结构白口铸铁的力学性能与Ni-Hard2铸铁相当。

  • 标签: 纳米结构白口铸铁 碳含量 组织 力学性能
  • 简介:以AgNO3为原料,抗坏血酸为还原剂,采用快速加料的方式制备高分散性超细银粉,用扫描电镜、ζ电位分析仪、紫外-可见光谱分析仪等对银粉进行表征,研究硝酸银溶液性质如硝酸银溶液浓度c(AgNO3)、初始pH值,以及表面活性剂的加入对超细银粉形貌粒径的影响。结果表明,当c(AgNO3)>0.30mol/L时,银粉表面粗糙、形貌变得不规则且分散性变差。银粉粒度随硝酸银溶液pH值增大而减小,但pH增大到7.0时银粉团聚现象较严重。抗坏血酸分子在还原过程中具有自分散作用,在c(AgNO3)为0.2mol/L、初始pH=5.0的条件下,不添加任何表面活性剂即可获得分散性好、表面光滑、形貌规则的球形银粉。在AgNO3溶液中加入分散剂PVP可适当减小银粉粒径,而加入丁二酸、吐温80、PEG、PAA和明胶等分散剂对银粉形貌的改善不大。

  • 标签: 硝酸银浓度 初始PH值 表面活性剂 超细银粉 抗坏血酸
  • 简介:Al-Zn-Mg-Cu系超强铝合金因为高强度和高韧性,已作为轻质高强结构材料广泛应用于航空航天领域。该文主要介绍国内外高强铝合金的发展历程及最新研究进展,指出Al-Zn-Mg-Cu超强铝合金的研究经历了高强低韧→高强耐蚀→高强高韧耐蚀→超强高韧耐蚀4个发展阶段,认为调控晶界结构及晶界析出相状态已成为目前铝合金研究的重点;简要评述微观组织和晶界结构对超强铝合金性能的影响,并介绍超强铝合金弥散相和形变—热处理工艺的研究现状及其调控晶界结构和晶界析出相状态的原理。最后指出寻找新型弥散相和开发新型的形变—热处理工艺是提高超强铝合金性能的重要发展方向和途径。

  • 标签: 超强铝合金 微观组织 晶界结构 弥散相 热处理
  • 简介:采用X射线XRD、红外光谱FTIR、扫描电镜SEM、透射电镜TEM等分析手段,研究了十六胺有机膜对羟基磷灰石(HA)晶体结构、形核、晶体形貌和结晶学定向生长的调控作用及其机理.结果表明:无有机膜时,生成物为磷酸八钙(OCP)和羟基磷灰石(HA)的混合物,其生长速率很慢且晶体排列无一定规则;而在十六胺有机膜调控下,生成物为按规则排列、沿〈0001〉定向生长、结晶良好的纳米片状羟基磷灰石晶体,且其形核和生长速度均很快.其原因是:十六胺有机膜上带有的大量极性强、电荷密度高的-NH3基团,通过静电作用在有机膜/溶液界面处形成局域过饱和浓度,促进羟基磷灰石晶体形核;另一方面,十六胺有机膜的二维晶格尺寸HA(0001)面的晶格参数具有良好的匹配关系,构造了一个有利于HA以(0001)面形核生长的结构框架,从而促进了HA相沿〈0001〉方向定向生长.

  • 标签: 生物矿化 羟基磷灰石 定向生长
  • 简介:采用Ni—Cr-B-Si非晶箔作为中间连接层在1090~1180℃真空下对钼合金耐热不锈钢进行液态扩散连接,研究扩散连接温度对钒合金/不锈钢连接样微观结构、成分分布、显微硬度的影响。结果表明:Ni—Cr-B-Si非晶箔熔化后对钼合金及310S不锈钢母材具有较好的润湿性,在真空下可实现较好的冶金结合。中间连接层组织演变为镍基固溶体,并在钼合金一侧发现Mo—Ni—B金属间化合物。随连接温度升高,连接层中的元素向母材的扩散更加充分,生成的金属间化合物层厚度增加,Kirkendall孔洞数量增多。

  • 标签: 钼合金 不锈钢 液态扩散连接 非晶中间层
  • 简介:采用水热法制备铈稳定钪掺杂氧化锆的超细纳米晶。利用X射线衍射仪、傅里叶红外光谱仪分别研究水热产物的物相和结构,结合热重-差热分析仪分析水热反应过程物相与能量的变化,通过透射电子显微镜研究pH值对水热产物颗粒大小聚集状态的影响。结果表明,在200℃、pH=8、反应时间为3h时,得到的水热产物为立方单相,粒径约为4nm。当pH值升高到10时,立方相的颗粒出现长大和团聚现象,平均粒径约为6nm。

  • 标签: 水热法 铈稳定钪掺杂氧化锆 纳米晶
  • 简介:采用3种不同的工艺(直接在450℃下进行时效处理;80%冷轧,然后在450℃下进行时效处理;600℃/8h高温预时效+80%冷轧+780℃/2min+450℃/16h终时效)对固溶处理后的Cu-2.0Ni-0.34Si-Mg合金进行形变热处理,研究形变热处理工艺对该合金的组织硬度及电导率的影响。结果表明:采用第3种工艺对合金进行形变热处理,由于其中的短时高温预处理可以获得溶质原子充分固溶的过饱和固溶体,因此终时效后的合金具有最佳的综合性能,显微硬度为180HV,相对电导率为49.8%IACS,伸长率为13%。合金的平均晶粒尺寸约为20μm,主要析出强化相为δ-Ni2Si。

  • 标签: Cu-2.0Ni-0.34Si-Mg合金 显微组织 显微硬度 电导率
  • 简介:分别采用超音速火焰喷涂工艺和爆炸喷涂工艺,在Q235不锈钢基体上制备Fe基非晶合金涂层,对比研究这2种非晶合金涂层在室温下的干摩擦磨损特性,并探讨摩擦磨损机理。结果表明,超音速火焰喷涂工艺制备的Fe基非晶合金涂层相比,采用爆炸喷涂工艺制备的涂层更致密,孔隙率为2.1%,显微硬度更高,平均硬度高达1095.6HV,且耐磨性更好;并且涂层摩擦因数增至稳定值的时间较短,具有更稳定的摩擦磨损行为。超音速火焰喷涂涂层的磨损形式主要以疲劳磨损为主,而爆炸喷涂涂层的磨损形式为粘着磨损和磨粒磨损的综合作用,并以粘着磨损为主。

  • 标签: 超音速火焰喷涂 爆炸喷涂 非晶合金涂层 摩擦磨损
  • 简介:粉末冶金钛合金具有优良的综合性能,逐步在汽车工业中得到了广泛的应用.简要介绍了粉末冶金钛合金在汽车零部件中的应用,并对其发展前途加以展望.

  • 标签: 钛合金 汽车 粉末冶金
  • 简介:以水热共还原法制备纳米W-30%Cu复合粉末,通过真空烧结和包套热挤压制备超细晶W-Cu复合材料,并进行后续热处理。采用X射线衍射、高分辨率透射电镜、扫描电镜等观察和分析W-30%Cu复合粉体和合金的成分及组织形貌,研究热挤压及后续退火处理对材料致密度、电导率和硬度等性能的影响。结果表明:水热产物为纳米级(10~15nm)规则的类球形结构,经煅烧及共还原后得到的W-30%Cu复合粉末粒度细小,呈特殊的W包覆Cu结构,颗粒分布均匀;复合粉末在1050℃真空烧结后相对密度只有91.5%,经热挤压后致密度提高到97.07%,布氏硬度达到223,组织细密,W相和Cu相分布均匀,钨颗粒细小(1~3μm),形成典型的钨骨架和铜网络结构。经过后续的退火处理,钨铜分布更均匀,钨粒径进一步减小,材料的致密度和电导率都更高,分别为98.82%和43.31%IACS,形成良好的综合性能指标匹配。

  • 标签: 水热共还原 真空烧结 超细晶钨铜复合材料 包套热挤压 热处理 致密化
  • 简介:用C3H6作为碳源气,Ar作为稀释气体和载气,TaCl5为钽源,采用化学气相沉积法(chemicalvapordeposition,CVD)在高纯石墨表面制备TaC涂层。采用X射线衍射(XRD)和扫描电镜(SEM)等对涂层进行表征,研究1000℃下稀释气体(Ar)流量对TaC涂层成分、织构及表面形貌的影响。结果表明:随着稀释气体流量增大,表面均匀性和光滑度提高,晶粒尺寸减小,晶体择优取向降低,沉积速率减小,涂层中C含量增多。当稀释气体流量为100mL/min时,TaC涂层晶粒尺寸沉积速率分别为32.5nm和0.60μm/h;而当稀释气体流量增大到600mL/min时,涂层晶粒尺寸沉积速率分别下降到21nm和0.25μm/h。

  • 标签: TAC 化学气相沉积 稀释气体流量 择优取向
  • 简介:采用冷等静压法(coolisostaticpressing,CIP)制得大尺寸钼骨架,对骨架进行渗铜制备Mo-30Cu合金,并在350℃进行温轧,研究CIP压力及熔渗温度和熔渗时间对合金致密度的影响以及合金的轧制性能。结果表明:采用冷等静压法在120~180MPa压力下可制备孔隙分布均匀,无分层等缺陷的钼骨架,熔渗后坯料的线收缩率随CIP压力增加而逐渐降低,最佳CIP压力为160MPa;在一定范围内升高熔渗温度延长保温时间均有助于提高合金致密度;冷等静压–溶渗法制备的高致密Mo-30Cu合金具有较好的温轧性能,有效提高了大尺寸试样的加工性能。CIP压力为160MPa压制的骨架在1350℃渗铜6h后相对密度达到99%以上,合金的温轧变形量可达到65%。

  • 标签: Mo-Cu合金 冷等静压(CIP) 渗铜 致密化 轧制性能
  • 简介:雾化喷嘴是喷射成形技术的关键部件,为验证喷嘴结构对雾化性能的影响,采用计算流体动力学方法研究不同Laval喷管喉口结构、导流管锥顶角和突出长度对喷射气体流场及导流管顶端静压强(ΔP)的影响规律。结果表明在设计紧耦合Laval喷嘴中:圆角过渡式喉口形状比尖角及柱体过渡更利于获得高速气流;较小的锥顶角可以减小导流管出口静压值,但速度衰减较大;导流管突出长度在7~8mm时可以获得较好的气动效果。最后选定圆角过渡Laval形出气口形状,导流管锥顶角β=45°以及突出长度h=8mm加工雾化喷嘴并进行雾化实验,在雾化压强0.8MPa时7055合金粉末以球状或类球状形态存在,质量中径为42.3μm。

  • 标签: Laval管 导流管突出长度 锥顶角 抽吸压强
  • 简介:以Mo、Nb、Si、Al元素粉末为原料,采用燃烧合成法制备名义成分分别为(Mo0.97Nb0.03)(Si0.97Al0.03)2、(Mo0.94Nb0.06)(Si0.97Al0.03)2、(Mo0.91Nb0.09)(Si0.97Al0.03)2(Mo0.88Nb0.12)(Si0.97Al0.03)2等4种不同化含量的合金,研究其燃烧合成行为,分析燃烧合成过程中粉末压坯的燃烧模式、燃烧温度、燃烧波前沿蔓延速率以及产物组成。结果表明:随Nb含量增加,燃烧合成反应模式由螺旋燃烧逐渐转变为稳态燃烧。添加Nb、Al后,合金的最高燃烧温度升高,并随Nb含量增加呈现先升高后降低的变化趋势,其中(Mo0.91Nb0.09)(Si0.97Al0.03)2的燃烧温度最高,达到1924K,但燃烧波蔓延速率随Nb含量增加而逐渐降低。XRD结果表明:(Mo0.97Nb0.03)(Si0.97Al0.03)2合金主要由MoSi2构成,含有少量Mo(SiAl)2和Mo5Si3;(Mo0.94Nb0.06)(Si0.97Al0.03)2中开始出现NbSi2相,(Mo0.91Nb0.09)(Si0.97Al0.03)2和(Mo0.88Nb0.12)(Si0.97Al0.03)2合金中Mo5Si3的衍射峰强度进一步降低,而NbSi2的衍射峰略有增强,因而添加Nb有利于形成C40结构的NbSi2,同时抑制Mo5Si3的产生。SEM观察表明合金为多孔结构。

  • 标签: 金属间化合物 二硅化钼 合金化 燃烧合成 组织结构
  • 简介:采用反应磁控溅射法分别在单晶硅(100)和不锈钢基底上沉积不同W含量的Zr1-xWxN(x=0.17,0.28,0.36,0.44,0.49)复合膜,利用扫描电镜、能谱仪、X射线衍射仪、纳米压痕仪和摩擦磨损试验机研究该复合薄膜的微结构、力学性能及摩擦性能,并探讨ZrWN复合膜的摩擦机理。结果表明:当x≤0.28时,复合膜呈fcc(Zr,W)N结构;当x为0.36~0.44时,复合膜呈fcc(Zr,W)N和fccW2N结构;当x=0.49时复合膜为fcc(Zr,W)N、fccW2N结构和β-W单质。Zr1-xWxN复合膜的硬度随x增加先增大后减小,当x=0.44时达到最大值,为36.0GPa。随x增加,Zr1-xWxN复合膜的室温摩擦因数先减小后增大,摩擦表面生成的氧化物WO3对于降低摩擦因数起重要作用。

  • 标签: ZrWN复合膜 微结构 力学性能 摩擦性能