简介:摘要目的基于深度卷积神经网络(DCNN)方法自动测量彩色眼底像上全局和局部豹纹分布密度。方法应用研究。将2021年5~ 7月于山东第一医科大学附属青岛眼科医院北部院区行近视手术的患者514例1 028只眼的1 005张彩色眼底像建立人工智能(AI)数据库。采用RGB颜色通道重标定方法(CCR算法)、基于Lab颜色空间的CLAHE算法、多重迭代照度估计的Retinex算法、具有色彩保护的多尺度Retinex算法对图像进行预处理。对比观察上述4种图像增强方法以及使用Dice损失、边缘重叠率损失和中心线损失对豹纹分割模型效果的影响。建立眼底豹纹分割模型识别全图范围内豹纹结构区域;构建眼底组织结构检测模型用于视盘及黄斑中心凹定位。计算视野范围内后极部豹纹密度(FTD )、黄斑区豹纹密度(MTD)、视盘区豹纹密度(PTD )。结果应用CCR算法图像预处理和训练损失组合后,豹纹分割模型的Dice系数、准确率、灵敏度、特异性、约登指数分别达到0.723 4、94.25%、74.03%、96.00%和70.03%。模型自动测量的FTD、MTD、PTD值与人工标注测量值平均绝对误差分别为0.014 3、0.020 7、0.026 7,均方根误差则分别为0.017 8、0.032 3、0.036 5。结论基于DCNN分割和检测方法能自动测量近视患者眼底全局和局部区域的豹纹分布密度,可以更准确地辅助临床监测和评估眼底豹纹改变对近视发展的影响。
简介:摘要人工神经网络(ANN)是一种驱动人工智能(AI)的网络框架,其中采用经典卷积神经网络(CNN)进行胚胎质量评估可进行固定时间节点胚胎细胞计数和图像识别;采用全连接的深度神经网络(DNN),胚胎图像识别准确度提升,适用于较高硬件配置以及需要整合临床信息进行综合预测;残差网络通过增加层数提高准确度并通过跳跃连接解决梯度消失问题,实现动态胚胎评估。贝叶斯网络(BN)机器学习擅长推理,在条件缺失情况下可通过推理弥补数据不足,可结合临床复杂信息进行综合预测评估;支持向量机(MLP)机器学习存在梯度消失与爆炸,容易丢失图像部分空间特征,适用于小样本评估。ANN在预测胚胎植入率、胚胎非整倍体方面具有一定优势,开发新的胚胎质量评估方法减少侵入性检测是人类辅助生殖技术(ART)重要研究方向。
简介:摘要随着e-Learning新型学习模式的迅速推广,“网络教育”已基本形成并且不断完善。《妇产科学》作为临床医学的主干学科,借助这一新兴途径加强课程建设,有助于医学生理论与实际紧密结合即临床思维的养成。本研究深入探究如何合理构建开放交互的《妇产科学》网络课程,证明有利于提高教学质量和实现学生自主学习。