北京地铁 6 号线受电弓碳滑板异常磨耗分析

(整期优先)网络出版时间:2020-09-04
/ 1

北京地铁 6 号线受电弓碳滑板异常磨耗分析

张海洋 张妍 (中车长春轨道客车股份有限公司,长春 130062// 第一作者,高级工程师 )

摘 要:本文较为深入的分析了北京地铁6号线出现受电弓碳滑板异常磨耗的原因。首先从理论上给出了碳滑板磨耗分为电气磨耗和机械磨耗两部分,然后从这两点入手,采用排除法,逐个排除可能会造成异常磨耗的因素,最后给出了结论及解决方案。

关键词:地铁;碳滑板;异常磨耗;

1背景

北京地铁6号线车辆采用两种受电弓,其中天海公司受电弓63列,日本东洋公司受电弓21列。天海公司受电弓(简称天海弓)为气囊弓,东洋公司受电弓(简称东洋弓)为弹簧弓,两种的受电弓虽然控制原理不同,但均属于世界轨道车辆普遍采用的受电弓。天海弓及东洋弓在国内外均有大量的装车业绩,属于成熟产品。

北京6号线自2018年11月20日起,西延线开通进行全线贯通试验,所有车辆(一二期及西延线车辆)进行混跑,线路运行方式为:车辆自潞城到海淀五路居正常载客运营,在五路居站清客,在西延线路段进行空载试车,车辆回到五路居站后再次投入载客运营。

自2018年12月24日起,陆续接到受电弓碳滑板出现异常磨耗问题的反馈,碳滑板磨耗过快,同时出现异常的波浪形,如下图所示:

5f51a17038887_html_f41edb6eb0d64393.png

从现场观察来看碳滑板的普遍特性为碳滑板磨损区域呈现两端磨损大中部磨损小的形态。另外碳滑板磨耗速度极快,正常碳滑板磨耗到限为车辆运行10万公里左右,现场碳滑板磨耗到限时车辆仅运行了5000公里,为正常的二十分之一。

2 原因分析

弓网之间相互作用的关系如下图所示,造成碳滑板磨耗的原因可以分为电气磨耗和机械磨耗两类。电气磨耗的因素包括燃弧率、载流量等因素,影响机械磨耗的因素包括接触压力、接触网硬点等因素。

5f51a17038887_html_2af7a976a4d8fd63.png

碳滑板的电气磨耗、机械磨耗和受电弓升力之间的关系如下图所示,只有找到两者之间的平衡点,才能有效降低磨耗量。

5f51a17038887_html_4bae81bd1a18fcbf.png

每天晚上对回段部分车辆进行磨耗量分析,力求找到磨耗量变化趋势。

分别从电气磨耗和机械磨耗上着手进行原因调查,分析如下。

2.1 电气磨耗

首先分析下车辆载流量的变化,从下图中可以看出车辆无论是空载还是满载其电流值不超过4500A,北京6号线项目每列车共3个受电弓,单弓受流的额定电流大于1600A,实际浸金属结构碳滑板在2400A以下都具有良好的导电性,因此电流属于正常范围内,可以排除由于电流突然增大引起温升导致的异常磨耗。

5f51a17038887_html_fb23d02758e756b3.png

另外经调查ATO控车逻辑在西延线开通后进行了调整,车辆出站加速度有所增加,我们对比了调速前和调速后的电流曲线,如下图中红线和黑线所示,从图中可以看出电流变化不明显,不会对磨耗量造成影响。

5f51a17038887_html_b9e1f8bbc1d36908.png

2.2 机械磨耗

研究了不同厂家碳滑板材质的区别,重点为碳滑板硬度、熔点信息,得出几种碳滑板的硬度和熔点接近,另外联合业主分别试装了西屋、北京万高的碳滑板,磨耗量没有明显区别。

调整受电弓升力,将东洋弓的升力由70N调整为80N,目前车辆维持在80N的升力,以求改善弓网关系,降低燃弧率,经过弓网监测车(06067编组)的数据统计,燃弧率并没有明显好转,磨耗量也无明显变化。

在西延线开通后才出现的异常磨耗,因此对跑西延线较多和跑西延线较少的车辆碳滑板磨耗量进行了一系列对比,分析结果如下:

5f51a17038887_html_ec2d1661b451f9ac.png

从以上数据可以看到,车辆在西延线运行较少的车辆其磨耗率明显低于车辆在西延线运行较多的车辆。

3 结论及解决方案

从以上分析可以看出,由于电气磨耗原因引起的碳滑板异常磨耗基本可以排除,结合一二期线路和西延线线路磨耗量的对比,基本可以确定延长线开通后,由于弓网之间没有充分的磨合是造成运营初期碳滑板异常磨耗的主因,结合现有状况,给出解决方案如下:

1)对接触网进行打磨,消除接触网的硬点等不良因素对碳滑板的影响。

2)对两边和中间高低差超过5mm的碳滑板进行打磨,消除两边和中间的高低差,减少碳滑板与接触网间的反复冲击。

3)对接触网全线的拉出值进行调整,使其均匀布置,不能集中在±200mm处。

经过上述三种方案的调整,目前碳滑板异常磨耗问题已经得到解决,碳滑板寿命预计达到8-10万公里。

参考文献

  1. 方岩,等. 地铁受电弓滑板磨耗分析[J]. 电力机车与城轨车辆,2018,41(4)

  2. GB50157-地铁设计规范2013, 15.3.23