简介:用数值模拟的方法,研究了Host-Parasitoid模型.该模型是一类非线性离散系统,反映了在一定的时间和空间内,寄生虫和寄宿主之间的生存状态.通过调节各种影响下的分岔参数,可以观察到系统具有周期泡,倍周期分叉,间歇混沌和Hopf分岔等复杂非线性动力学现象,揭示了系统通向混沌的途径.利用不同周期遍历下的奇怪吸引子和具有分形边界的吸引盆对系统的非线性特性进行了深入的探讨.最后利用参数开闭环控制法对系统的混沌状态进行了有效的控制.数值仿真和理论分析表明,选择相应的控制参数可将该系统的混沌状态控制到不同的稳定周期运动.
简介:介绍了一种实数快速傅里叶变换(FFT)的设计原理及实现方法,利用输入序列的对称性,将2N点的实数FFT计算转化为N点复数FFT计算,然后将FFT的N点复数输出序列进行适当的运算组合,获得原实数输入的2N点FFT复数输出序列,使FFT的运算量减少了近一半,很大程度上减少了系统的运算时间,解决了信号处理系统要求实时处理与傅里叶变换运算量大之间的矛盾.同时,给出了在TMS320VC5402DSP上实现实数FFT的软件设计,并比较了执行16,32,64,128,256,512,1024点实数FFT程序代码与相同点数复数FFT的程序代码运行时间.经过实验验证,各项指标均达到了设计要求.
简介:研究了不确定参数的Lorenz系统和Rossler系统的异结构同步问题.基于Lyapunov稳定性理论,采用主动同步,自适应同步两种方法实现异结构混沌系统的同步,并且利用数值模拟来阐释理论的有效性.
简介:在Goodwin与Puu的宏观经济思想基础上,得到了一个推广的非线性动力学经济周期系统.首先用数值方法研究了此系统在特定参数条件下的全局分岔行为.然后结合最大Lyapunov指数,详细讨论了系统在分岔过程中动力学特征的转变.通过分析分岔图形发现在某些参数区间内倍周期分岔导致了混沌;在混沌区域内嵌有多个周期窗口;"加速数"值的增加可以促进经济的周期性运动.最后介绍了分岔和混沌分析得到的动力学性质对理解经济波动的应用.