简介:摘要利用2008年1月1日至2012年12月31日逐日NCEP再分析资料(1×10)和大同地区地面常规观测资料,选取相邻两天的气象因子差值作为预报因子,相邻两天的日最高/最低气温的差值作为目标因子,分站点分月构建三层结构的日最高/最低BP神经网络模型,并应用独立样本进行模型检验,结果表明,该模型输出结果与实况拟合较好,且其对明显的升降温过程能够准确预报。在对ECMWF数值预报产品释用基础上,针对大同站2012年1月最高气温进行了24h、48h和72h模拟预测,结果显示,该BP神经网络预报模型各时效预报准确率TS评分均高于中央气象台MOS预报。
简介:随着20世纪航空科技的进步,不仅航空发动机的工作性能大幅度提高,而且对可靠性和可维护性的要求更高,更全面。在民用航空发动机领域,可维护性对于保证飞机安全,提高经济具有特殊的重要。现代的维修思想已从早期的定期维护过渡到主动的视情维护策略,而促使这一转变的基础是发动机普遍采用了单元体结构化设计和发动机健康监视和故障诊断系统(EMS)的应用。目前EMS已经成为民用飞行器安全控制系统中的不可缺少的组成部分,广泛应用于航空公司的维护工作中。EMS对提高发动机可靠性,保证飞行安全,延长发动机寿命,降低维修成本等方面具有重要作用。
简介:摘要利用神经网络进行心电图识别时,存在神经网络网络结构、初始权值以及网络的动量因子、学习参数难以确定,易陷入局部极小、过拟合等问题。遗传算法具有很强的全局寻优能力,能以较大的概率找到全局最优解,提出一种改进的GA-BP混合训练算法,优化神经网络的权值和结构,应用于自动识别心电图,收到良好的效果。
简介:摘要院神经网络被广泛地应用于字符识别,通过对其难点问题的分析,为了提高字符识别率,本文应用改进型BP神经网络进行字符识别,该算法识别率高,速度快,可适用于多种高噪声环境中,实用性很强。
简介:采用BP神经网络对聚酯玻璃钢氙弧灯加速老化的弯曲寿命进行了预测。通过对聚酯及其玻璃钢的人工氙弧灯加速老化,测试其不同老化时间的弯曲强度,对弯曲强度与老化时间进行BP神经网络的建模分析,借助MATLAB软件对聚酯玻璃钢的使用寿命分别进行分析与预测,并采用最小二乘法对所预测的结果进行了对比。结果表明:在以弯曲强度达到初始强度值的一半作为失效条件下,聚酯的氙灯老化寿命为813d,含填料玻璃钢老化寿命为1031d,无填料玻璃钢老化寿命为1065d,说明BP神经网络可以预测玻璃钢的老化寿命,预测结果与最小二乘法预测结果误差不大于8%,而且预测结果与该材料性能的实际情况相符。
简介:摘要在炼铁过程中,保持合理的炉温水平是达到炉况稳定顺利、实现高炉生产“优质、高产、长寿、低耗”的直接保证。一般通过预测铁水硅含量来间接地反映炉内温度的变化,判读高炉炉缸热状态。本研究提出将BP神经网络与遗传算法(GA)相结合,建立GA-BP网络模型。