简介:应用于高重复频率、高功率193nm准分子激光器会聚光路中的针孔空间滤波器,除了需要考虑它的材料加工难易、厚度、针孔尺寸等因素外,还需考虑材料抗激光损伤特性。本文利用激光损伤理论中一维热流模型对无限厚和有限厚不同金属样品在高峰值功率193nm准分子激光器照射下的损伤阈值进行了分析。结果表明:铝材料在厚度为1.2μm处比其它金属的损伤阈值高,可达1.16×1010W/cm2,且材料易于加工。利用聚焦离子束技术加工了航空铝材料样品,得到了厚度为1.2和1.5μm的针孔空间滤波器样品。扫描电镜观察其具有较好圆度和内壁粗糙度,基本满足剪切干涉仪对针孔空间滤波器的需求。
简介:传统动基座传递对准主要采用扩展卡尔曼滤波技术。但在动基座传递对准的非线性、非高斯条件下,这种基于模型线性化和高斯假设的滤波方法在估计系统状态及其方差时误差较大且可能发散。混合退火粒子滤波针对非线性、非高斯系统状态的在线估计问题,提出一种新的基于序贯重要性抽样的粒子滤波算法。在滤波算法中,用状态参数分解和退火系数来产生重要性概率密度函数,此概率密度函数综合考虑了转移先验、似然、噪声的统计特性以及最新的观察数据,因此更接近于系统状态的后验概率。实验仿真结果表明,这种基于混合退火粒子滤波器不仅比扩展卡尔曼滤波提高了传递对准的精度,而且又比传统的粒子算法减少了时间。
简介:在非线性、非高斯条件下进行动基座传递对准,如果采用卡尔曼滤波会出现误差较大甚至发散的问题。本文引入强跟踪自适应滤波器,建立对估计误差的一步预测方差PK/K-1的加权算法,来达到抑制噪声的目的;同时,针对初始对准对准精度与快速性的要求,建立了动基座传递对准精确的非线性滤波模型。通过计算机仿真,模拟了飞机机动模式,验证所提滤波器的可行性。最后,通过与扩展卡尔曼滤波的比较,说明非线性强跟踪自适应滤波器在对准精度与速度上都有更好的表现。
简介:一般的Kalman滤波器要求有准确的动态和统计模型,而低成本的MEMS-IMU性能随着温度急剧变化,故在MEMS-IMU/GPS组合导航系统中使用一般的Kalman滤波器存在很多的局限性。针对低成本的MEMS-IMU/GPS组合导航系统,提出了多模态自适应滤波算法在MEMS-IMU/GPS组合导航系统中的应用;针对普通的多模态算法中的问题,采用修正的多模态自适应滤波算法来提高MEMS-IMU/GPS组合导航系统的性能。使用静态实时测试数据,验证了所提出的算法。测试结果表明,与普通Kalman滤波器相比,修正的多模态滤波算法提高了MEMS-IMU/GPS组合导航系统的性能;采用所提出的算法,MEMS-IMU/GPS组合导航系统的短时间静态位置精度小于5m(标准差),速度精度小于0.1m/s(标准差),姿态角精度小于0.5°(标准差)。
简介:捷联惯性导航系统静基座初始对准时一般先进行粗对准,使失准角缩小到一定范围内从而满足小失准角假设下的线性误差模型,然后再进行精对准。在不进行粗对准时失准角一般为大角度,需要采用复杂的非线性误差模型和非线性滤波方法。研究发现通过设置合理的误差协方差矩阵初值,采用反馈校正滤波结构,并引入强跟踪滤波算法可以在大失准角情况下既无需粗对准,又无需采用非线性模型来实现精对准。仿真结果表明,该方法可以实现大失准角初始对准,鲁棒性好,在任意姿态初值下都可以使航向角在300s内收敛到0.05°的理论极限精度,与小失准角精对准方法的速度和精度相当但省去了粗对准因而耗时更短,与无迹卡尔曼滤波在600s时才收敛到0.5°的速度相比大为改善。
简介:针对随机时滞和异步相关噪声情况下的状态估计问题,提出了一种改进的高斯滤波算法(GF),并给出了其适用于高维系统的实现形式—随机时滞和异步相关容积卡尔曼滤波器(CKF-RDCN)。首先,通过满足Bernoulli分布的互不相关随机序列,来描述系统观测数据中可能存在的随机时滞现象,将量测噪声作为状态变量用以实现对观测时滞后验概率密度的估计。其次,利用一阶斯特林插值公式来近似估计,由于过程噪声和量测噪声异步相关,而导致的含有随机变量的多维积分问题。最后,依据三阶球径容积法则,给出了CKF-RDCN滤波算法的详细设计。此外,经典GF算法是所提出的改进GF算法的特例,其作为一个通用的非线性滤波算法框架,根据不同的后验概率密度估计方法,可以有不同的实现形式。仿真结果表明,相比于扩展卡尔曼滤波算法(EKF)以及容积卡尔曼滤波算法(CKF),CKF-RDCN在解决含有观测时滞和相关噪声系统的状态估计问题时,具有更高的精度和更好的数值稳定性。